On-The-Fly Veritication ot
Rateless Erasure Codes

Max Krohn (MIT CSAIL)
Michael Freedman and David Mazieres (NYU)

On-The-Fly Veritication ot
Rateless Erasure Codes

Max Krohn (MIT CSAIL)
Michael Freedman and David Mazieres (NYU)

The Setting

A large file F
o Linux ISO (650MB)

H(F) is available
o signed by Publisher (RedHat)

A handful of untrusted sources/mirrors S,,...§

‘ A Handful of Senders

The Setting

A large file F
o Linux ISO (650MB)

H(F) is available
o signed by Publisher (RedHat)

A handful of untrusted sources S,,...§
o Their aggregate BW is limited

A slew of receivers R,,...,R; 400000
o Version 81.3 just released! Want it Now!

Three Desirable Properties

Clients Sources
Get Fast Can

Downloads Multicast

Clients
Can Verify
Blocks On-the-Fly

Recetvers Get Fast, Verifiable Downloads

The trusted publisher (RedHat)
o Splits up F into n blocks

o Hashes all blocks

o Signs all hashes (or hash tree)

Recelvers:
o Download and verify hashes
o Download needed file blocks in parallel

)

‘ X) X \.4.. e
@ X N

X<

Everyone for Themselves

FEveryone For Themselves

Clients
Get Fast
Downloads

Clients
Can Verify
Blocks On-the-Fly

Veritiable Multicast (BitTorrent)

>

S, S3
R7 R10
Rl | /IR,

>

Veritiable Multicast (BitTorrent)

Sources
Can
Multicast

Clients
Can Verify
Blocks On-the-Fly

Multicast With Erasure Codes

Sources erasure encode the file F
A 201211211 2] 2] 2|l 2| 2] 2|| 2
NS

e It 2112 2|1 2 [2| 2| 2| 2|l 2|| 2
* ‘, “l 2 ? ? ? 2 ? ? ? ? ?
K- o1 12| 21 12 2] 21 21 121 2
| ?,_r\‘_ ,"x 200 201 211 211 211 21| 21 2| 2|| ?
L= 20021212 [22| 2] 2|22

n blocks > N blocks

Multicast With Erasure Codes

Sources erasure encode the file F

[] L]
» = = L] =

o EEEEEEEEE
A DEEEEREEE
a.*,;-«, -
| n blocks DEDEEREEEE
F > N blocks
Recelvers collect blocks and decode
? E ? 2] 2 =:‘II
I I s
e S N
? : ? : : : ? ? : I e‘”'! (. , =! I -
211 2 21| 2 o] 2 ' é’*--u;"v’“)

1.03n blocks

n blocks =

‘ Multicast With Erasure Codes

Multicast With Erasure Codes

Bullet [SOSP 2003]

SplitStream [SOSP 2003]

Big Downloads [IPTPS 2003]

Informed Content Delivery [SIGCOMM 2002]

Recervers Cannot Verifyv Content

Multicast With Erasure Codes

Clients Sources
Get Fast Can

Downloads Multicast

Multicast With Erasure Codes

Clients Sources
Get Fast Can
Downloads Multicast

Clients
Can Verify

Blocks On-the-Fly

What is the Attack Goal?

To corrupt the file.
0 waste bandwidth.

How To Attack?

Send correct blocks but with Sz
skewed distributions. S

o “Distribution Attack”

Send incorrect blocks

o “Pollution Attack”
Karlof et al. [NDSS '04]

Properties of a Solution to Pollution

OK: Recelvers can tell

good from bad. S >
J Much better: Recelvers |

I can finger bad blocks as I

| they arrive. I

CONTRIBUTION

Outline
Introduction
Review of LT Codes
Strawman #1

Strawman #2

Efficiently Catching Bad Blocks as They
Arrive

LT-Codes [Luby, FOCS 2002]

F= (Bl (& (B (e [

n=5 input blocks

‘ L'T-Codes — How To Encode

1.

E(F)= |

3.
4

 HEEI

Pick degree d, from a pre-specified
distribution. (d,=2)

. Select d, input blocks uniformly at

random. (Pick b, and b,)
Compute their sum. (¢, — b, +Db,)

Output (¢, {1 4})

'LT-Codes — How To Encode (cont’d)

E(F)= /

‘ How To Decode

How To Decode

E(F): C C, Cs C, Cs

How To Decode

E(F): C C, Cs C, Cs

How To Decode

bbh_%h,o
| |

SO &

U AN
[]
< SO &
CG
& o
o a
S’ o
S o)
S i)
JIR 1
LL LL
inj

‘ How To Decode

How To Decode

How To Decode

How To Decode

E(F): C, C, 3

How To Decode

er)= [a] E Eﬂ B

How To Decode

‘ Outline
= Introduction
= Review of LT Codes

m Strawman #1

o Simple Solution To Tell Good Blocks From
Bad

= Strawman #2

= Efficiently Catching Bad Blocks as They
Arrive

“Smart Decoder” for LT-Codes

b, b, b, b, b

“Smart Decoder” for LT-Codes

b

bl b2 b3 4
[[= [B

h(c;) = h(k)

“Smart Decoder” for LT-Codes

b, b, b, b, b

“Smart Decoder” for LT-Codes

b, b, b, b, b

“Smart Decoder” for LT-Codes

E(F): ! C; C3 Cs Ce

C, <_c3—b5
c, —« C,—h
F= CS‘_C5_b5

b, b, b, b, b

“Smart Decoder” for LT-Codes

E(F): C; C, s - £] Ce

b,| |b,| |by| |b,

“Smart Decoder” for LT-Codes

E(F)= |c] [e
F=

b, | |b,| |bg| |b,

“Smart Decoder” for LT-Codes

EF)= |e L] [=] [=]
c,7b, +h
Implies
F= |b b, | | b, h(c, —b) # h(b,)
() n®)] [ne)] [re)]

“Smart Decoder” for LT-Codes

E(F)= el |e] [E M 4 e

b,| |b,| |by| |b,

“Smart Decoder” for LT-Codes

b,| |b,| |b,| |b,

“Smart Decoder:” Problem

1.00

0.80

0.60

0.40
0.30

Fraction of Blocks Recoverable

0.20

0.07
0.00

0.5 0.6 0.7 0.8 0.9 1

Fraction of Transfer Completed

*Data collected from 50 random Online encodings of a 10,000 block file.

‘ Outline

= Introduction

= Review of LT Codes
= Strawman #1

m Strawman #2
o Hashing/Signing Encoded Blocks

= Efficiently Catching the Bad as They Arrive

Hashing/Signing Encoded Blocks

F AL

- {3

f‘#“r \ [i - "

)))))

N N)))
N))))

)))))

)) -~))

)))))

)) -~))

' F - n blocks

Trusted Publisher (RedHat)

o Picks e, computes e:n encoded blocks
o Hashes all encoded blocks

o Signs the hashes.

e-n bloc

KS

Hashing/Signing Encoded Blocks

Expansion factor e should be big to avoid
duplicate blocks.

e should be small to make crypto overhead
acceptable.
Our analysis shows there’s no “sweet spot”.

Hashing/Signing Encoded Blocks

Expansion factor e should be big to avoid
duplicate blocks.

e should be small to make crypto overhead
acceptable.

Our analysis shows there’s no “sweet spot”.

o e.g., best case bandwidth requirements: +5%

0 e.g., generating hashes is very expensive as e
gets large.

‘ Outline

= Introduction

= Review of LT Codes
= Strawman #1

= Strawman #2

m Efficiently Catching the Bad as They
Arrive

Best of Both Worlds

Goal:

o Crypto overhead of one hash for every block in
the input file (Strawman #1)

o Verify blocks as they arrive (Strawman #2)

|dea:

o Distribute hashes of file blocks, and use them to
verify encoded blocks.

2 Need a better hash function.

Insight: Homomorphic Hashing
Assume function h exists such that:
1. is homomorphic: h(x) h(z) = h(x+ 2)
> is a CRHF: h(x) =h(y) Iff x=y

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R wants proof that:

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

h(c) = h(b,) th(by)

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R knows: R wants proof that:

h(c) = h(b,) th(by)

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R knows: R wants proof that:
h(c) = h(b,) (k)
Property 11

h(c) = h(b, +b;)

Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R knows: R wants proof that:
h(c) = h(b,) (k)
Property 11

Property 2
(C) = (b, +) €

Homomorphic Hashing: Protocol

R receives the block (¢.{2,5})
0 Compute h(c)
0 I h(c) = h(b,) h(b)

Accept block; mark as valid

a else
Suspect sender of being bad guy, and switch.

Homomorphic Hashing: Protocol

R receives the block (¢.{2,5})
0 Compute h(c)
0 I h(c) = h(b,) h(b)

Accept block; mark as valid

a else
Suspect sender of being bad guy, and switch.

Can such an h possibly exist?

Homomorphic Hashing: Related Work

DLog-Based CRHF
o Pederson Commitment [CRYPTO '91]
o Chaum etal. [CRYPTO '91]

One-Way Accumulators
o Benaloh and de Mare [EUROCRYPT 93]
o Bari¢ and Pfitzmann [EUROCRYPT '93]

Incremental Hashing
o Bellare et al. [CRYPTO '94]

Homomorphic Signatures
o Micali and Rivest [RSA '02]
o Johnson et al. [RSA '02]

Mechanics ot Homomorphic Hashing
Discrete Log Hash
Pick 1024-bit prime p and 256-bit prime g, g divides (p-1)
Pick from Zp 512 generators of order g: g =(9,,-.-19s;,)
Write F as elements in Z,

F=

n, 0,
256-bit “fragment”

bk 5 (Zq)512

16K “block”

How to Encode (example)

Standard LT-Codes:

C,=b, b, Uk

Homomorphic Scheme:

C; =b, +b, +by(modaq)

(b,
C,=|

Kb512,2/

/bLg\ /bl,S\

+

Kb512,3) \b512,5 y

How To DLog Hash

h(b,) =

[b, A
b2,1

\b512,1 y

X

D@—)

g

\ 9512

glbl,l A
b,

9,

b512 1)

Al g2ig .. g, e

Hashes are elements in Zp(128 bytes big)

Hash reduces 16K block by a factor of 128

How To DLog Hash

h(b,) =

[b, A
b2,1

\b512,1 y

X

D@—)

g

\ 9512

glbl,l A
b,

9,

b512 1)

Al g2ig .. g, e

Hashes are elements in Zp(128 bytes big)

Hash reduces 16K block by a factor of 128

o +1% overhead

DILog-Hash: Key Property

Note that: h(D;)

(b;) =[] 9 [] 9"
K K

=1 9 9
k

— b ;i +h ;
|:| Ok

=h(b, +b,)

DIog-Hash: Key Property
Note that: (D,) ’](bj) — |_| gl'i’k,i I—l g
K K

=1 9 9
k

— b ;i +h ;
I:l Ok

=h(b; +b;)

Goal achieved!

““T'his Seems Really Expensive”

Throughput
Operation on a 16K Block (kB/sec)
DLog Hash 39
Arrival on 1.5Mbps DSL 190

SHA1 Hash 57,600

Key Optimizations

Hash Generation
o Each publisher picks her own parameters,
o compute h(b,) with 1 exponentiation (not 512)

Hash Verification

0 Receiver verifies hashes probabillistically and in
batches.
Bellare et al. [EUROCRYPT '98]

Much Better

Throughput
Operation on a 16K Block (MB/sec)
Naive DLog Hash 0.038
Per-publisher Generation 11.210
Batch Verification 7.620
Arrival on 1.5 Mbps DSL 0.186
SHA1 Hash 56.250

Homomorphic Hashing: Key Points

Key Algebraic Feature

+ Homomorphism: Receivers can compose hashes the
way encoders sum file blocks.

+ Can check encoded blocks as they arrive.

Fast

+ Can be optimized to achieve good generation and
verification throughputs

Provably Secure
+ As hard as discrete log (SHA1/MD5 not needed)

Conclusion

Clients Sources
Get Fast Can

Downloads Multicast

Clients
Can Verify
Blocks On-the-Fly

Thank you.

Now accepting questions.

