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The Setting

A large file F
o Linux ISO (650MB)

H(F) is available
o signed by Publisher (RedHat)

A handful of untrusted sources/mirrors S,,...§
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The Setting

A large file F
o Linux ISO (650MB)

H(F) is available
o signed by Publisher (RedHat)

A handful of untrusted sources S,,...§
o Their aggregate BW is limited

A slew of receivers R,,...,R; 400000
o Version 81.3 just released! Want it Now!



Three Desirable Properties

Clients Sources
Get Fast Can

Downloads Multicast

Clients
Can Verify
Blocks On-the-Fly



Recetvers Get Fast, Verifiable Downloads

The trusted publisher (RedHat)
o Splits up F into n blocks

o Hashes all blocks

o Signs all hashes (or hash tree)

Recelvers:
o Download and verify hashes
o Download needed file blocks in parallel
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Veritiable Multicast (BitTorrent)
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Veritiable Multicast (BitTorrent)

Sources
Can
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Clients
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Multicast With Erasure Codes

Sources erasure encode the file F
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n blocks > N blocks




Multicast With Erasure Codes

Sources erasure encode the file F
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o EEEEEEEEE
A DEEEEREEE
a.*,;-«, -
| n blocks DEDEEREEEE
F > N blocks
Recelvers collect blocks and decode
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1.03n blocks
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Multicast With Erasure Codes

Bullet [SOSP 2003]

SplitStream [SOSP 2003]

Big Downloads [IPTPS 2003]

Informed Content Delivery [SIGCOMM 2002]



Recervers Cannot Verifyv Content
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Multicast With Erasure Codes

Clients Sources
Get Fast Can
Downloads Multicast

Clients
Can Verify

Blocks On-the-Fly




What is the Attack Goal?

To corrupt the file.
0 waste bandwidth.




How To Attack?

Send correct blocks but with Sz
skewed distributions. S

o “Distribution Attack”

Send incorrect blocks

o “Pollution Attack”
Karlof et al. [NDSS '04]



Properties of a Solution to Pollution

OK: Recelvers can tell

good from bad. S >
J Much better: Recelvers |

I can finger bad blocks as I

| they arrive. I

CONTRIBUTION




Outline
Introduction
Review of LT Codes
Strawman #1

Strawman #2

Efficiently Catching Bad Blocks as They
Arrive



LT-Codes [Luby, FOCS 2002]

F= (Bl (& (B (e [

n=5 input blocks




‘ L'T-Codes — How To Encode

1.

E(F)= |

3.
4

 HEEI

Pick degree d, from a pre-specified
distribution. (d,=2)

. Select d, input blocks uniformly at

random. (Pick b, and b, )
Compute their sum. (¢, — b, +Db,)

Output (¢, {1 4})




'LT-Codes — How To Encode (cont’d)

E(F)= /




‘ How To Decode
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How To Decode

E(F): C C, Cs C, Cs




How To Decode
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How To Decode

E(F): C, C, 3




How To Decode

er)= [a] E Eﬂ B




How To Decode




‘ Outline
= Introduction
= Review of LT Codes

m Strawman #1

o Simple Solution To Tell Good Blocks From
Bad

= Strawman #2

= Efficiently Catching Bad Blocks as They
Arrive




“Smart Decoder” for LT-Codes

b, b, b, b, b



“Smart Decoder” for LT-Codes

b

bl b2 b3 4
[ [ = [ B

h(c;) = h(k)
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“Smart Decoder” for LT-Codes

E(F): ! C; C3 Cs Ce

C, <_c3—b5
c, —« C,—h
F= CS‘_C5_b5

b, b, b, b, b



“Smart Decoder” for LT-Codes

E(F): C; C, s - £ ] Ce

b,| |b,| |by| |b,




“Smart Decoder” for LT-Codes

E(F)= |c ] [e
F=

b, | |b,| |bg| |b,



“Smart Decoder” for LT-Codes

EF)= |e L] [=] [=]
c,7b, +h
Implies
F= |b b, | | b, h(c, —b) # h(b,)
() n®)] [ne)] [re)]



“Smart Decoder” for LT-Codes

E(F)= el |e] [E M 4 e

b,| |b,| |by| |b,




“Smart Decoder” for LT-Codes

b,| |b,| |b,| |b,




“Smart Decoder:” Problem

1.00

0.80

0.60

0.40
0.30

Fraction of Blocks Recoverable

0.20

0.07
0.00

0.5 0.6 0.7 0.8 0.9 1

Fraction of Transfer Completed

*Data collected from 50 random Online encodings of a 10,000 block file.




‘ Outline

= Introduction

= Review of LT Codes
= Strawman #1

m Strawman #2
o Hashing/Signing Encoded Blocks

= Efficiently Catching the Bad as They Arrive




Hashing/Signing Encoded Blocks
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' F - n blocks

Trusted Publisher (RedHat)

o Picks e, computes e:n encoded blocks
o Hashes all encoded blocks

o Signs the hashes.

e-n bloc

KS




Hashing/Signing Encoded Blocks

Expansion factor e should be big to avoid
duplicate blocks.

e should be small to make crypto overhead
acceptable.
Our analysis shows there’s no “sweet spot”.



Hashing/Signing Encoded Blocks

Expansion factor e should be big to avoid
duplicate blocks.

e should be small to make crypto overhead
acceptable.

Our analysis shows there’s no “sweet spot”.

o e.g., best case bandwidth requirements: +5%

0 e.g., generating hashes is very expensive as e
gets large.
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= Introduction

= Review of LT Codes
= Strawman #1

= Strawman #2

m Efficiently Catching the Bad as They
Arrive




Best of Both Worlds

Goal:

o Crypto overhead of one hash for every block in
the input file (Strawman #1)

o Verify blocks as they arrive (Strawman #2)

|dea:

o Distribute hashes of file blocks, and use them to
verify encoded blocks.

2 Need a better hash function.



Insight: Homomorphic Hashing
Assume function h exists such that:
1. is homomorphic: h(x) h(z) = h(x+ 2)
> is a CRHF: h(x) =h(y) Iff x=y



Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R wants proof that:
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Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R knows: R wants proof that:
h(c) = h(b,) (k)
Property 11

h(c) = h(b, +b;)




Homomorphic Hashing: Intuition
R receives the block (¢.{2,5})

R knows: R wants proof that:
h(c) = h(b,) (k)
Property 11

Property 2
(C) = (b, + ) €




Homomorphic Hashing: Protocol

R receives the block (¢.{2,5})
0 Compute h(c)
0 I h(c) = h(b,) h(b)

Accept block; mark as valid

a else
Suspect sender of being bad guy, and switch.



Homomorphic Hashing: Protocol

R receives the block (¢.{2,5})
0 Compute h(c)
0 I h(c) = h(b,) h(b)

Accept block; mark as valid

a else
Suspect sender of being bad guy, and switch.

Can such an h possibly exist?



Homomorphic Hashing: Related Work

DLog-Based CRHF
o Pederson Commitment [CRYPTO '91]
o Chaum etal. [CRYPTO '91]

One-Way Accumulators
o Benaloh and de Mare [EUROCRYPT 93]
o Bari¢ and Pfitzmann [EUROCRYPT '93]

Incremental Hashing
o Bellare et al. [CRYPTO '94]

Homomorphic Signatures
o Micali and Rivest [RSA '02]
o Johnson et al. [RSA '02]



Mechanics ot Homomorphic Hashing
Discrete Log Hash
Pick 1024-bit prime p and 256-bit prime g, g divides (p-1)
Pick from Zp 512 generators of order g: g =(9,,-.-19s;,)
Write F as elements in Z,

F=

n, 0,
256-bit “fragment”

bk 5 (Zq )512

16K “block”



How to Encode (example)

Standard LT-Codes:

C,=b, b, Uk

Homomorphic Scheme:

C; =b, +b, +by(modaq)

(b,
C,=|

Kb512,2/

/bLg\ /bl,S\

+

Kb512,3 ) \b512,5 y




How To DLog Hash

h(b,) =

[ b, A
b2,1

\b512,1 y

X

D@—)

g

\ 9512

glbl,l A
b,

9,

b512 1 )

Al g2ig .. g, e

Hashes are elements in Zp(128 bytes big)

Hash reduces 16K block by a factor of 128



How To DLog Hash

h(b,) =

[ b, A
b2,1

\b512,1 y

X

D@—)

g

\ 9512

glbl,l A
b,

9,

b512 1 )

Al g2ig .. g, e

Hashes are elements in Zp(128 bytes big)

Hash reduces 16K block by a factor of 128

o +1% overhead



DILog-Hash: Key Property

Note that:  h(D; )

(b;) =[] 9 [] 9"
K K

=1 9 9
k

— b ;i +h ;
|:| Ok

=h(b, +b,)



DIog-Hash: Key Property
Note that: (D, ) ’](bj) — |_| gl'i’k,i I—l g
K K

=1 9 9
k

— b ;i +h ;
I:l Ok

=h(b; +b;)

Goal achieved!



““T'his Seems Really Expensive”

Throughput
Operation on a 16K Block (kB/sec)
DLog Hash 39
Arrival on 1.5Mbps DSL 190

SHA1 Hash 57,600




Key Optimizations

Hash Generation
o Each publisher picks her own parameters,
o compute h(b,) with 1 exponentiation (not 512)

Hash Verification

0 Receiver verifies hashes probabillistically and in
batches.
Bellare et al. [EUROCRYPT '98]



Much Better

Throughput
Operation on a 16K Block (MB/sec)
Naive DLog Hash 0.038
Per-publisher Generation 11.210
Batch Verification 7.620
Arrival on 1.5 Mbps DSL 0.186
SHA1 Hash 56.250




Homomorphic Hashing: Key Points

Key Algebraic Feature

+ Homomorphism: Receivers can compose hashes the
way encoders sum file blocks.

+ Can check encoded blocks as they arrive.

Fast

+ Can be optimized to achieve good generation and
verification throughputs

Provably Secure
+ As hard as discrete log (SHA1/MD5 not needed)



Conclusion

Clients Sources
Get Fast Can

Downloads Multicast

Clients
Can Verify
Blocks On-the-Fly



Thank you.

Now accepting questions.



